Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译
Spatiotemporal imaging has applications in e.g. cardiac diagnostics, surgical guidance, and radiotherapy monitoring, In this paper, we explain the temporal motion by identifying the underlying dynamics, only based on the sequential images. Our dynamical model maps the inputs of observed high-dimensional sequential images to a low-dimensional latent space wherein a linear relationship between a hidden state process and the lower-dimensional representation of the inputs holds. For this, we use a conditional variational auto-encoder (CVAE) to nonlinearly map the higher-dimensional image to a lower-dimensional space, wherein we model the dynamics with a linear Gaussian state-space model (LG-SSM). The model, a modified version of the Kalman variational auto-encoder, is end-to-end trainable, and the weights, both in the CVAE and LG-SSM, are simultaneously updated by maximizing the evidence lower bound of the marginal likelihood. In contrast to the original model, we explain the motion with a spatial transformation from one image to another. This results in sharper reconstructions and the possibility of transferring auxiliary information, such as segmentation, through the image sequence. Our experiments, on cardiac ultrasound time series, show that the dynamic model outperforms traditional image registration in execution time, to a similar performance. Further, our model offers the possibility to impute and extrapolate for missing samples.
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Over the years, sequential Monte Carlo (SMC) and, equivalently, particle filter (PF) theory has gained substantial attention from researchers. However, the performance of the resampling methodology, also known as offspring selection, has not advanced recently. We propose two deterministic offspring selection methods, which strive to minimize the Kullback-Leibler (KL) divergence and the total variation (TV) distance, respectively, between the particle distribution prior and subsequent to the offspring selection. By reducing the statistical distance between the selected offspring and the joint distribution, we obtain a heuristic search procedure that performs superior to a maximum likelihood search in precisely those contexts where the latter performs better than an SMC. For SMC and particle Markov chain Monte Carlo (pMCMC), our proposed offspring selection methods always outperform or compare favorably with the two state-of-the-art resampling schemes on two models commonly used as benchmarks from the literature.
translated by 谷歌翻译
Scene understanding is crucial for autonomous robots in dynamic environments for making future state predictions, avoiding collisions, and path planning. Camera and LiDAR perception made tremendous progress in recent years, but face limitations under adverse weather conditions. To leverage the full potential of multi-modal sensor suites, radar sensors are essential for safety critical tasks and are already installed in most new vehicles today. In this paper, we address the problem of semantic segmentation of moving objects in radar point clouds to enhance the perception of the environment with another sensor modality. Instead of aggregating multiple scans to densify the point clouds, we propose a novel approach based on the self-attention mechanism to accurately perform sparse, single-scan segmentation. Our approach, called Gaussian Radar Transformer, includes the newly introduced Gaussian transformer layer, which replaces the softmax normalization by a Gaussian function to decouple the contribution of individual points. To tackle the challenge of the transformer to capture long-range dependencies, we propose our attentive up- and downsampling modules to enlarge the receptive field and capture strong spatial relations. We compare our approach to other state-of-the-art methods on the RadarScenes data set and show superior segmentation quality in diverse environments, even without exploiting temporal information.
translated by 谷歌翻译
Autonomous vehicles currently suffer from a time-inefficient driving style caused by uncertainty about human behavior in traffic interactions. Accurate and reliable prediction models enabling more efficient trajectory planning could make autonomous vehicles more assertive in such interactions. However, the evaluation of such models is commonly oversimplistic, ignoring the asymmetric importance of prediction errors and the heterogeneity of the datasets used for testing. We examine the potential of recasting interactions between vehicles as gap acceptance scenarios and evaluating models in this structured environment. To that end, we develop a framework facilitating the evaluation of any model, by any metric, and in any scenario. We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
translated by 谷歌翻译
A reliable pose estimator robust to environmental disturbances is desirable for mobile robots. To this end, inertial measurement units (IMUs) play an important role because they can perceive the full motion state of the vehicle independently. However, it suffers from accumulative error due to inherent noise and bias instability, especially for low-cost sensors. In our previous studies on Wheel-INS \cite{niu2021, wu2021}, we proposed to limit the error drift of the pure inertial navigation system (INS) by mounting an IMU to the wheel of the robot to take advantage of rotation modulation. However, it still drifted over a long period of time due to the lack of external correction signals. In this letter, we propose to exploit the environmental perception ability of Wheel-INS to achieve simultaneous localization and mapping (SLAM) with only one IMU. To be specific, we use the road bank angles (mirrored by the robot roll angles estimated by Wheel-INS) as terrain features to enable the loop closure with a Rao-Blackwellized particle filter. The road bank angle is sampled and stored according to the robot position in the grid maps maintained by the particles. The weights of the particles are updated according to the difference between the currently estimated roll sequence and the terrain map. Field experiments suggest the feasibility of the idea to perform SLAM in Wheel-INS using the robot roll angle estimates. In addition, the positioning accuracy is improved significantly (more than 30\%) over Wheel-INS. Source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-SLAM).
translated by 谷歌翻译
封闭的量子机械系统的物理学受哈密顿量的约束。但是,在大多数实际情况下,这种哈密顿量尚不清楚,最终所有的数据是从系统上的测量中获得的数据。在这项工作中,我们通过将基于机器学习的基于梯度的优化从机器学习中从张量量的网络中从机器学习中从基于梯度的优化中汇总到从基于梯度的优化的技术中汇总到从动力学数据中进行交互的多体汉密尔顿人来学习的家庭。我们的方法非常实用,实验友好且本质上可扩展,以使系统尺寸超过100次旋转。特别是,我们在综合数据上证明了算法的工作原理,即使仅限于一个简单的初始状态,少量的单量观测和时间演变为相对较短的时间。对于一维海森贝格模型的具体示例,我们的算法在系统大小和缩放的误差常数中作为数据集大小的反平方根。
translated by 谷歌翻译
人类仍在执行许多高精度(DIS)任务,而这是自动化的理想机会。本文提供了一个框架,该框架使非专家的人类操作员能够教机器人手臂执行复杂的精确任务。该框架使用可变的笛卡尔阻抗控制器来执行从动力学人类示范中学到的轨迹。可以给出反馈以进行交互重塑或加快原始演示。董事会本地化是通过对任务委员会位置的视觉估算来完成的,并通过触觉反馈进行了完善。我们的框架在机器人基准拆卸挑战上进行了测试,该机器人必须执行复杂的精确任务,例如关键插入。结果显示每个操纵子任务的成功率很高,包括盒子中新型姿势的情况。还进行了消融研究以评估框架的组成部分。
translated by 谷歌翻译